Abstract

Non-orthogonal multiple access (NOMA) is an efficient approach that can improve spectrum utilization and support massive connectivity for next-generation wireless networks. However, over a wireless channel, the superimposed NOMA signals are highly susceptible to eavesdropping, potentially leading to severe leakage of confidential information. In this article, we unleash the potential of network interference and exploit it constructively to enhance physi-cal-layer security in NOMA networks. In particular, three different types of network interference, including artificial noise, specifically-designed jamming signals, and inter-user interference, are well engineered to intentionally reduce information leakage while mitigating the effect on signal reception quality of legitimate users, thereby significantly enhancing the transmission security of NOMA. Furthermore, we propose interference engineering strategies for more advanced full-duplex NOMA, intelligent reflecting surface NOMA, cognitive radio NOMA, and multi-cell NOMA networks, and discuss several open research problems and challenges, which could inspire innovative interference engineering designs for secure NOMA communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.