Abstract

Internet of Things (IoT) is an emerging networking technology that connects both living and non-living objects globally. In an era where IoT is increasingly integrated into various industries, including healthcare, it plays a pivotal role in simplifying the process of monitoring and identifying diseases for patients and healthcare professionals. In IoT-based systems, safeguarding healthcare data is of the utmost importance, to prevent unauthorized access and intermediary assaults. The motivation for this research lies in addressing the growing security concerns within healthcare IoT. In this proposed paper, we combine the Multi-Step Deep Q Learning Network (MSDQN) with the Deep Learning Network (DLN) to enhance the privacy and security of healthcare data. The DLN is employed in the authentication process to identify authenticated IoT devices and prevent intermediate attacks between them. The MSDQN, on the other hand, is harnessed to detect and counteract malware attacks and Distributed Denial of Service (DDoS) attacks during data transmission between various locations. Our proposed method’s performance is assessed based on such parameters as energy consumption, throughput, lifetime, accuracy, and Mean Square Error (MSE). Further, we have compared the effectiveness of our approach with an existing method, specifically, Learning-based Deep Q Network (LDQN).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.