Abstract

Recent developments in communication technologies, such as 5G, together with innovative computing paradigms, such as edge computing, provide further possibilities for the implementation of real-time networked control systems. However, privacy and cyber-security concerns arise when sharing private data between sensors, agents and a third-party computing facility. In this letter, a secure version of the distributed formation control is presented, analyzed and simulated, where gradient-based formation control law is implemented in the edge, with sensor and actuator information being secured by fully homomorphic encryption method based on learning with error (FHE-LWE) combined with a proposed mixed uniform-logarithmic quantizer (MULQ). The novel quantizer is shown to be suitable for realizing secure control systems with FHE-LWE where the critical real-time information can be quantized into a prescribed bounded space of plaintext while satisfying a sector bound condition whose lower and upper-bound can be made sufficiently close to an identity. An absolute stability analysis is presented, that shows the asymptotic stability of the closed-loop secure control system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.