Abstract

Because of the decentralized trait of the blockchain and the Internet of vehicles, both are very suitable for the architecture of the other. This study proposes a multi-level blockchain framework to secure information security on the Internet of vehicles. The main motivation of this study is to propose a new transaction block and ensure the identity of traders and the non-repudiation of transactions through the elliptic curve digital signature algorithm ECDSA. The designed multi-level blockchain architecture distributes the operations within the intra_cluster blockchain and the inter_cluster blockchain to improve the efficiency of the entire block. On the cloud computing platform, we exploit the threshold key management protocol, and the system can recover the system key as long as the threshold partial key is collected. This avoids the occurrence of PKI single-point failure. Thus, the proposed architecture ensures the security of OBU-RSU-BS-VM. The proposed multi-level blockchain framework consists of a block, intra-cluster blockchain and inter-cluster blockchain. The roadside unit RSU is responsible for the communication of vehicles in the vicinity, similar to a cluster head on the Internet of vehicles. This study exploits RSU to manage the block, and the base station is responsible for managing the intra-cluster blockchain named intra_clusterBC, and the cloud server at the back end is responsible for the entire system blockchain named inter_clusterBC. Finally, RSU, base stations and cloud servers cooperatively construct the multi-level blockchain framework and improve the security and the efficiency of the operation of the blockchain. Overall, in order to protect the security of the transaction data of the blockchain, we propose a new transaction block structure and adopt the elliptic curve cryptographic signature ECDSA to ensure that the Merkle tree root value is not changed and also make sure the transaction identity and non-repudiation of transaction data. Finally, this study considers information security in a cloud environment, and therefore we propose a secret-sharing and secure-map-reducing architecture based on the identity confirmation scheme. The proposed scheme with decentralization is very suitable for distributed connected vehicles and can also improve the execution efficiency of the blockchain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call