Abstract

Quantum digital signatures (QDSs) promise information-theoretic security against repudiation and forgery of messages. Compared with currently existing three-party QDS protocols, multiparty protocols have unique advantages in the practical case of more than two receivers when sending a mass message. However, complex security analysis, numerous quantum channels and low data utilization efficiency make it intractable to expand three-party to multiparty scenario. Here, based on six-state non-orthogonal encoding protocol, we propose an effective multiparty QDS framework to overcome these difficulties. The number of quantum channels in our protocol only linearly depends on the number of users. The post-matching method is introduced to enhance data utilization efficiency and make it linearly scale with the probability of detection events even for five-party scenario. Our work compensates for the absence of practical multiparty protocols, which paves the way for future QDS networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.