Abstract
The rise of IT-dependent operations in modern organizations has heightened their vulnerability to cyberattacks. Organizations are inadvertently enlarging their vulnerability to cyber threats by integrating more interconnected devices into their operations, which makes these threats both more sophisticated and more common. Consequently, organizations have been compelled to seek innovative approaches to mitigate the menaces inherent in their infrastructure. In response, considerable research efforts have been directed towards creating effective solutions for sharing Cyber Threat Intelligence (CTI). Current information-sharing methods lack privacy safeguards, leaving organizations vulnerable to proprietary and confidential data leaks. To tackle this problem, we designed a novel framework called SeCTIS (Secure Cyber Threat Intelligence Sharing), integrating Swarm Learning and Blockchain technologies to enable businesses to collaborate, preserving the privacy of their CTI data. Moreover, our approach provides a way to assess the data and model quality and the trustworthiness of all the participants leveraging some validators through Zero Knowledge Proofs. Extensive experimentation has confirmed the accuracy and performance of our framework. Furthermore, our detailed attack model analyzes its resistance to attacks that could impact data and model quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.