Abstract

Arthrobacter sp. strains are among the most frequently isolated, indigenous, aerobic bacterial genera found in soils. Member of the genus are metabolically and ecologically diverse and have the ability to survive in environmentally harsh conditions for extended periods of time. The genome of Arthrobacter aurescens strain TC1, which was originally isolated from soil at an atrazine spill site, is composed of a single 4,597,686 basepair (bp) circular chromosome and two circular plasmids, pTC1 and pTC2, which are 408,237 bp and 300,725 bp, respectively. Over 66% of the 4,702 open reading frames (ORFs) present in the TC1 genome could be assigned a putative function, and 13.2% (623 genes) appear to be unique to this bacterium, suggesting niche specialization. The genome of TC1 is most similar to that of Tropheryma, Leifsonia, Streptomyces, and Corynebacterium glutamicum, and analyses suggest that A. aurescens TC1 has expanded its metabolic abilities by relying on the duplication of catabolic genes and by funneling metabolic intermediates generated by plasmid-borne genes to chromosomally encoded pathways. The data presented here suggest that Arthrobacter's environmental prevalence may be due to its ability to survive under stressful conditions induced by starvation, ionizing radiation, oxygen radicals, and toxic chemicals.

Highlights

  • Strains of Arthrobacter species were first culled from soils in the 19th century [1] and are among the most frequently isolated, indigenous, aerobic bacterial genera found in soils [2,3,4,5,6]

  • To better understand how these bacteria survive in environmentally harsh conditions, the authors used a structural genomics approach to identify genes involved in soil survival of Arthrobacter aurescens strain TC1, a bacterium originally isolated for its ability to degrade the herbicide atrazine

  • We have shown that the extraordinary amine metabolism of A. aurescens TC1, coupled with plasmid enzymes that metabolize secondary amines to primary amines, can together provide for the metabolism of more than 500 s-triazine ring compounds [45]

Read more

Summary

Introduction

Strains of Arthrobacter species were first culled from soils in the 19th century [1] and are among the most frequently isolated, indigenous, aerobic bacterial genera found in soils [2,3,4,5,6]. To better understand how these bacteria survive in environmentally harsh conditions, the authors used a structural genomics approach to identify genes involved in soil survival of Arthrobacter aurescens strain TC1, a bacterium originally isolated for its ability to degrade the herbicide atrazine. They found that the genome of this bacterium comprises a single circular chromosome and two plasmids that encode for a large number proteins involved in stress responses due to starvation, desiccation, oxygen radicals, and toxic chemicals. Arthrobacter sp. likely occupy an important niche in nature biodegrading carbohydrate polymers and humic substances

Conclusions
Findings
Materials and Methods

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.