Abstract

How cellular checkpoints couple the orderly assembly of macromolecular machines with cell-cycle progression is poorly understood. The alpha-proteobacterium Caulobacter crescentus assembles a single polar flagellum during each cell cycle. We discovered that the expression of multiple flagellin transcripts is licensed by a translational checkpoint responsive to a dual input signal: a secretion-competent hook-basal-body (HBB) structure and a surge in the FlaF secretion chaperone during cytokinesis, instructed by the cell-cycle program. We find that the unorthodox FljJ flagellin, one of the six flagellin paralogs, acts as a checkpoint linchpin, binding both FlaF and the FlbT translational regulator. FljJ recruits FlbT to inhibit translation at the 5' untranslated region in other flagellin transcripts before HBB assembly. Once FlaF is synthesized and stabilized, it directs FljJ secretion through the HBB, thereby separating FlbT from its co-activator and relieving translational inhibition. The FlbT/FlaF pair is wide spread and its functional properties are conserved in alpha-proteobacteria, including pathogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.