Abstract
Insulin-like growth factor-1 (IGF-1) is implicated in follicle development and is considered to mediate the actions of growth hormone (GH) and gonadotrophins at the ovarian level. However, the expression and secretion of IGF-1 by the ovary are controversial, partly because of species and cell-type specificity. The present study investigated whether IGF-1 is produced by ovine granulosa cells and whether its production is regulated by GH and follicle stimulating hormone (FSH). Follicles (>/=4.0 mm) were obtained from ewes during seasonal anoestrus. Granulosa cells were cultured for a total period of 96 h in Dulbecco's modified Eagle's medium (DMEM)/Ham's F-12 medium supplemented with BSA (0.1%, w:v), transferrin (0.5 microg/ml) and testosterone (100 ng/ml). In the first set of experiments, cells were incubated in the presence of bovine calf serum (BCS) (2.5%) for the initial 48 h of culture. The cells were then cultured for the next 48 h in medium without BCS, but containing either GH (0, 2, 20, and 200 ng/ml) or FSH (0, 20, 200, and 2000 ng/ml). The medium was assayed for oestradiol (E), progesterone (P) and IGF-1. There were six wells per treatment and the experiment was carried out four times. Control granulosa cells maintained both IGF-1 and E secretion, with only low levels of progesterone output. In all experiments, both GH and FSH produced significant (P<0.001) dose-related increases in E, IGF-1 and P secretion into the medium. The maximum responses to GH (20 or 200 ng/ml) were 402% for E and 528% for IGF-1 compared with controls. The maximum responses to FSH (200 or 2000 ng/ml) were 460% for E and 514% for IGF-1. The objective of the second set of experiments was to determine the effect of the progestogenic status of cells on IGF-1 production. Granulosa cells were cultured both in the presence and absence of BCS (2.5% in the medium) during the initial 48 h of culture. For the next 48 h, cells were cultured in serum-free medium. Addition of BCS to the medium during the initial 48 h of culture stimulated progesterone production. However, it did not affect either IGF-1 or oestradiol secretion between 49 and 96 h of culture, or the cell numbers at the end of culture. In conclusion, (1) IGF-1 is secreted by granulosa cells irrespective of their progestogenic status and (2) concomitant increases in E and IGF-1 production by granulosa cells as a result of GH and/or FSH treatment suggest a role for GH and FSH in the regulation of ovarian function.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have