Abstract
We consider secret key generation from relative localization information of a pair of nodes in a mobile wireless network in the presence of a mobile eavesdropper. Our scheme consists of two phases: in the first phase, legitimate node pair exchanges beacon signals to establish localization information based on noisy observations of these beacons; in the second phase, nodes generate secret key bits via a public discussion. Our problem can be categorized under the source models of information theoretic secrecy, where the distance between the legitimate nodes acts as the observed common randomness. We characterize the achievable secret key bit rate in terms of the observation noise variance at the legitimate nodes and the eavesdropper. This work provides a framework that combines information theoretic secrecy and wireless localization, and proves that the localization information provides a significant additional resource for secret key generation in mobile wireless networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.