Abstract

ABSTRACTZn‐rich Cu2ZnSnSe4 (CZTSe) films were prepared by a two‐step process consisting in the DC‐magnetron sputtering deposition of a metallic stack precursor followed by a reactive anneal under a Se + Sn containing atmosphere. Precursor composition and annealing temperature were varied in order to analyze their effects on the morphological, structural, and optoelectronic properties of the films and solar cell devices. Raman scattering measurements show the presence of ZnSe as the main secondary phase in the films, as well as the presence of SnSe at the back absorber region of the films processed with lower Zn‐excess values and annealing temperatures. The ZnSe phase is found to accumulate more towards the surface of the absorber in samples with lower Zn‐excess and lower temperature annealing, while increasing Zn‐excess and annealing temperature promote its aggregation towards the back absorber region of the devices. These measurements indicate a strong dependence of these process variables in secondary phase formation and accumulation. In a preliminary optimization of both the composition and reactive annealing process, a solar cell with 4.8% efficiency has been fabricated, and potential mechanisms limiting device efficiency in these devices are discussed. Copyright © 2014 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.