Abstract

ABSTRACTThis paper presents an outdoor performance monitoring method for degradation studies of perovskite modules, focusing on a large‐area perovskite module (81.9 cm2) over a long‐term monitoring campaign. The module underwent an industrial lamination process to prevent long‐term degradation from environmental factors. The characterization procedure involved degradation correction and determining the temperature coefficients and electrical parameters of the module using initial days of measurements. The results demonstrated temperature coefficients for Isc, Voc, and Pm (α′, β′, and γ) of −0.071%·K−1, −0.119%·K−1, and −0.113%·K−1, respectively, indicating a minimal temperature influence on this technology compared with conventional ones. Using this coefficient, the STC electrical parameters were retrieved from 1‐min power output data, resolving the uncertainty of the indoor/outdoor IV curve measurements caused by the curve scan direction (JV hysteresis effect). We also highlight the initial remarkable capacity recovery effect of almost 16% during the first 2 days of operation. Additionally, a procedure that includes the IV curves analysis taken every 10 min and their translation to standard conditions has been implemented to evaluate the degradation of the module over the long‐term outdoor campaign. The results show three different trends over the period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.