Abstract

Secondary ozonides (SOZ) of cyclohexene, 1-methylcyclohexene, 4-isopropyl-1-methylcyclohexene and d-limonene were cryo-synthesized by ozonolysis in pentane and purified on a silica gel column. The mass spectra obtained by atmospheric sampling Townsend discharge ionization (ASTDI) and collision activated dissociation (CAD) of the protonized SOZ showed characteristic losses evident of the ozonide structure. Oxygen was eliminated as, e.g., O and O 2, and loss of (HCHO + HCHO) or (O + CO 2) corresponded to the SOZ base-peak for the substituted cyclohexenes by ASTDI-MS. The CAD spectra of the protonized species by use of methane as chemical ionization gas, showed consecutive losses of three oxygen atoms. Elimination of hydroxy-methyl hydroperoxide (HMHP) was particular important for the protonized SOZ, unlike consecutive loss of (HCHO + HCHO) or (O + CO 2). In addition, the spectra of d-limonene were characterized by an unique loss of H 2O 2. These losses appear to be useful for identification of SOZ in gas-phase ozonolysis mixtures of endo-cyclic alkenes, which makes ASTDI an alternative to other on-line techniques for analysis of SOZ in ozonolysis mixtures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.