Abstract

Limona ketone was synthesized to explore the secondary organic aerosol (SOA) formation mechanism from limonene ozonolysis and also to test group-additivity concepts describing the volatility distribution of ozonolysis products from similar precursors. Limona ketone SOA production is indistinguishable from alpha-pinene, confirming the expected similarity. However, limona ketone SOA production is significantly less intense than limonene SOA production. The very low vapor pressure of limonene ozonolysis products is consistent with full oxidation of both double bonds in limonene and furthermore with production of products other than ketones after oxidation of the exo double bond in limonene. Mass-balance constraints confirm that ketone products from exo double-bond ozonolysis have a minimal contribution to the ultimate product yield. These results serve as the foundation for an emerging framework to describe the effect on volatility of successive generations of organic compounds in the atmosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.