Abstract
Secondary organic aerosol (SOA) formation from reactions of linear alkenes with NO(3) radicals was investigated in an environmental chamber using a thermal desorption particle beam mass spectrometer for particle analysis. A general chemical mechanism was developed to explain the formation of the observed SOA products. The major first-generation SOA products were hydroxynitrates, carbonylnitrates, nitrooxy peroxynitrates, dihydroxynitrates, and dihydroxy peroxynitrates. The major second-generation SOA products were hydroxy and oxo dinitrooxytetrahydrofurans, which have not been observed previously. The latter compounds were formed by a series of reactions in which delta-hydroxycarbonyls isomerize to cyclic hemiacetals, which then dehydrate to form substituted dihydrofurans (unsaturated compounds) that rapidly react with NO(3) radicals to form very low volatility products. For the approximately 1 ppmv alkene concentrations used here, aerosol formed only for alkenes C(7) or larger. SOA formed from C(7)-C(9) alkenes consisted only of second-generation products, whereas for larger alkenes first-generation products were also present and contributions increased with increasing carbon number apparently due to the formation of lower volatility products. The estimated mass fractions of first- and second-generation products were approximately 50:50, 30:70, 10:90, and 0:100, for 1-tetradecene, 1-dodecene, 1-decene, and 1-octene SOA, respectively. This study shows that delta-hydroxycarbonyls play a key role in the formation of SOA in alkene-NO(3) reactions and are likely to be important in other systems because delta-hydroxycarbonyls can also be formed from reactions of OH radicals and O(3) with hydrocarbons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.