Abstract

This study aims to describe the therapeutic potential of C. nocturnum leaf extracts against diabetes and neurological disorders via the targeting of α-amylase and acetylcholinesterase (AChE) activities, followed by computational molecular docking studies to establish a strong rationale behind the α-amylase and AChE inhibitory potential of C. nocturnum leaves-derived secondary metabolites. In our study, the antioxidant activity of the sequentially extracted C. nocturnum leaves extract was also investigated, in which the methanolic fraction exhibited the strongest antioxidant potential against DPPH (IC50 39.12 ± 0.53 µg/mL) and ABTS (IC50 20.94 ± 0.82 µg/mL) radicals. This extract strongly inhibited the α-amylase (IC50188.77 ± 1.67 µg/mL) and AChE (IC50 239.44 ± 0.93 µg/mL) in a non-competitive and competitive manner, respectively. Furthermore, in silico analysis of compounds identified in the methanolic extract of the leaves of C. nocturnum using GC-MS revealed high-affinity binding of these compounds with the catalytic sites of α-amylase and AChE, with binding energy ranging from -3.10 to -6.23 kcal/mol and from -3.32 to -8.76 kcal/mol, respectively. Conclusively, the antioxidant, antidiabetic, and anti-Alzheimer activity of this extract might be driven by the synergistic effect of these bioactive phytoconstituents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call