Abstract

In China, cotton is a significant cash crop, and cold stress negatively impacts the crop's development, production, and quality formation. Recent studies have shown that melatonin (MT) can alleviate the damage to plants under cold stress and promote good growth and development. In this study, the morphological and physiological changes induced by exogenous melatonin pretreatment on 'Xinluzao 33' cotton seedlings under cold stress were examined to investigate its defensive effects. The results showed that 100 μM MT pretreatment improved the cold resistance of cotton most significantly. It also improved the wilting state of cotton under cold stress, greatly increased the photosynthetic rate (Pn), stomatal conductance (Gs), maximum photochemical efficiency (Fv/Fm), and photosynthetic performance index (PIabs) by 116.92%, 47.16%, 32.30%, and 50.22%, respectively, and mitigated the adverse effects of low-temperature. In addition, MT supplementation substantially reduced the accumulation of superoxide anion (O2•-) and hydrogen peroxide (H2O2) by 14.5% and 45.49%, respectively, in cold-stressed cotton leaves by modulating the antioxidant system, thereby mitigating oxidative damage. Furthermore, MT pretreatment increased the endogenous melatonin content (23.80%) and flavonoid content (21.44%) and considerably induced the expression of biosynthesis enzyme-related genes. The above results indicate that exogenous melatonin improves the low-temperature resistance of cotton seedlings by regulating photosynthetic performance, antioxidant enzyme activity, antioxidant content, endogenous melatonin and flavonoid content, and the expression levels of genes related to their synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.