Abstract
Abstract. Mixed-phase clouds are essential for Earth’s weather and climate system. Ice multiplication via secondary ice production (SIP) is thought to be responsible for the observed strong increase in ice particle number concentration in mixed-phase clouds. In this study, we focus on the rime splintering also known as the Hallett–Mossop (HM) process, which still lacks physical and quantitative understanding. We report on an experimental study of rime splintering conducted in a newly developed setup under conditions representing convective mixed-phase clouds in the temperature range of −4 to −10 °C. The riming process was observed with high-speed video microscopy and infrared thermography, while potential secondary ice (SI) particles in the super-micron size range were detected by a custom-built ice counter. Contrary to earlier HM experiments, where up to several hundreds of SI particles per milligram of rime were found at −5 °C, we found no evidence of productive SIP, which fundamentally questions the importance of rime splintering. Further, we could exclude two potential mechanisms suggested to be the explanation for rime splintering: the freezing of droplets upon glancing contact with the rimer and the fragmentation of spherically freezing droplets on the rimer surface. The break-off of sublimating fragile rime spires was observed to produce very few SI particles, which is insufficient to explain the large numbers of ice particles reported in earlier studies. In the transition regime between wet and dry growth, in analogy to phenomena of the deformation of drizzle droplets upon freezing, we also observed the formation of spikes on the rimer surface, which might be a source of SIP.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have