Abstract
Re-invasion of the aquatic environment by terrestrial vertebrates resulted in the evolution of species expressing a suite of adaptations for high-performance swimming. Examination of swimming by secondarily aquatic vertebrates provides opportunities to understand potential selection pressures and mechanical constraints, which may have directed the evolution of these aquatic species. Mammals and birds realigned the body and limbs for cursorial movements and flight, respectively, from the primitive tetrapod configuration. This realignment produced multiple solutions for aquatic specializations and swimming modes. Initially, in the evolution of aquatic mammals and birds, swimming was accomplished by using paired appendages in a low-efficiency, drag-based paddling mode. This mode of swimming arose from the modification of neuromotor patterns associated with gaits characteristic of terrestrial and aerial locomotion. The evolution of advanced swimming modes occurred in concert with changes in buoyancy control for submerged swimming, and a need for increased aquatic performance. Aquatic mammals evolved three specialized lift-based modes of swimming that included caudal oscillation, pectoral oscillation, and pelvic oscillation. Based on modern analogs, a biomechanical model was developed to explain the evolution of specialized aquatic mammals and their transitional forms. Subsequently, fossil aquatic mammals were described that validated much of the model. However, for birds, which were adapted for aerial flight, fossil evidence has been less forthcoming to explain the transition to aquatic capabilities. A biomechanical model is proposed for birds to describe the evolution of specialized lift-based foot and wing swimming. For both birds and mammals, convergence in morphology and propulsive mechanics is dictated by the need to increase speed, reduce drag, improve thrust output, enhance efficiency, and control maneuverability in the aquatic environment.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have