Abstract

The aim of this study was to estimate the radiation-related secondary cancer risks in organs during the treatment of breast cancer with different radiotherapy techniques, such as three-dimensional conformal radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT), and volumetric modulated arc therapy (VMAT). The treatment plans for 26 patients with breast cancer who received whole-breast irradiation at a dose of 50 Gy included tangential field 3D-CRT with hard-wedges (W-TF), tangential field IMRT (2F-IMRT), multiple field IMRT (6F-IMRT), and double partial arcs (VMAT). Patients were divided into three groups according to the distance between the contralateral breast (CB) and the body of the sternum. Setup error was simulated by moving the isocenter, and the dose distribution was then recalculated without changing the field fluency distribution. Based on the linear-exponential, the plateau, and the full mechanistic dose-response models, the organ equivalent dose and excess absolute risk were calculated from dose-volume histograms to estimate the secondary cancer risks in organs. Compared with 3D-CRT, IMRT and VMAT showed excellent results regarding tumor conformity and homogeneity; however, the low dose volume to organs was considerably higher in 6F-IMRT and VMAT. Secondary cancer risks for 2F-IMRT were comparable or slightly lower than for W-TF, but considerably lower than for 6F-IMRT or VMAT. After setup error simulation, there was a small increase in secondary cancer risk for 2F-IMRT and an increase of 159% and 318% for 6F-IMRT and VMAT, respectively, compared with W-TF. Although these results were obtained in most patients, they did not necessarily apply to every individual. The secondary cancer risks in the CB decreased significantly in correlation with increased distance for all alternative techniques, although they were higher in VMAT and lower in 2F-IMRT regardless of the distance. After setup error simulation, the increased changes in secondary cancer risks in the CB were comparable between 2F-IMRT, 6F-IMRT, and VMAT, suggesting that the secondary cancer risks in the CB mainly depend on radiotherapy techniques and distance, although the effect of setup error cannot be ignored. In the contralateral lung (CL), the secondary cancer risks were almost independent from distance and depended mainly on radiotherapy techniques; they were rarely affected by setup error. VMAT was associated with a higher secondary cancer risk in the CL. For the ipsilateral lung (IL), the secondary cancer risks were higher than those in other organs because the IL receives high doses to achieve tumor control, and they were relatively lower in VMAT. This warrants special consideration when estimating the secondary cancer risk to the IL. The study results suggested that the optimal radiotherapy method for breast cancer should be determined on an individual basis and according to the balance between secondary cancer risks related to anatomic diversity and setup error, which can prevent blind selection of techniques.

Highlights

  • The aim of this study was to estimate the radiation-related secondary cancer risks in organs during the treatment of breast cancer with different radiotherapy techniques, such as three-dimensional conformal radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT), and volumetric modulated arc therapy (VMAT)

  • Patients were divided into three groups according to the distance between the contralateral breast and the body of the sternum (Fig. 1) as follows: patients with a distance of 3 cm were included in group 3 (G3)

  • The conformity index (CI) and homogeneity index (HI) for the planning target volume (PTV) were optimal in VMAT, followed by 6F-IMRT, whereas the CI and HI showed the worst values in 3D-CRT’ (P < 0.05)

Read more

Summary

Introduction

The aim of this study was to estimate the radiation-related secondary cancer risks in organs during the treatment of breast cancer with different radiotherapy techniques, such as three-dimensional conformal radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT), and volumetric modulated arc therapy (VMAT). Because of the effect of respiratory motion, systematic error, and random error, the setup errors in breast cancer may be up to 5 mm or even larger than 5 mm in three dimensional directions during radiation therapy[15] This introduces variation in the secondary dose to the CB and lungs in breast cancer treated with different modalities. We calculated and compared the secondary cancer risks associated with 3D-CRT, IMRT, and VMAT for the treatment of breast cancer after considering the effect of setup error and the distance between the breast and the body of the sternum. The concept of organ equivalent dose (OED) was used for the linear-exponential, plateau, and full mechanistic dose-response models[11,13] to evaluate the secondary cancer risks to the CB, contralateral lung (CL), and ipsilateral lung (IL) after radiation therapy for breast cancer

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call