Abstract
In previous works, we demonstrated that tertiary 3-chloropiperidines are potent chemotherapeutics, alkylating the DNA through the formation of bicyclic aziridinium ions. Herein, we report the synthesis of novel secondary 3-chloropiperidine analogues. The synthesis incorporates a new procedure to monochlorinate unsaturated primary amines utilizing N-chlorosuccinimide, while carefully monitoring the temperature to prevent dichlorination. Furthermore, we successfully isolated highly strained bicyclic aziridines by treating the secondary 3-chloropiperidines with a sufficient amount of base. We conclude this work with a DNA cleavage assay as a proof of principle, comparing our previously known substrates to the novel compounds. In this, the secondary 3-chloropiperidine as well as the isolated bicyclic aziridine, proved to be more effective than their tertiary counterpart.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.