Abstract

The problem of second-order water wave diffraction of an incident monochromatic wave field by an array of bottom-mounted circular cylinders is solved by a semi-analytical approach. The solution for the second-order potential is obtained by combining eigenfunction expansions with an integral representation. Unlike the indirect approach for second-order forces (Lighthill 1979; Molin 1979), this approach gives complete information about local flow characteristics (pressure, velocities, wave elevation, etc.) thus providing a basis for solving the third-order problem. The results obtained are compared with other published data, and new detailed results, useful for benchmarking purposes, are given. Finally the influences of wave incidence, cylinder radius and cylinder configuration are considered. This leads to the suggestion that there exists a near-trapping phenomenon for the second-order wave in an array of cylinders, at half the wave frequency at which the corresponding linear near-trapped mode occurs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call