Abstract
The weak approximation of the solution of a system of Stratonovich stochastic differential equations with a m–dimensional Wiener process is studied. Therefore, a new class of stochastic Runge–Kutta methods is introduced. As the main novelty, the number of stages does not depend on the dimension m of the driving Wiener process which reduces the computational effort significantly. The colored rooted tree analysis due to the author is applied to determine order conditions for the new stochastic Runge–Kutta methods assuring convergence with order two in the weak sense. Further, some coefficients for second order stochastic Runge–Kutta schemes are calculated explicitly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.