Abstract

We report our recent work on a second-order Krylov subspace and the corresponding second-order Arnoldi procedure for generating its orthonormal basis. The second-order Krylov subspace is spanned by a sequence of vectors defined via a second-order linear homogeneous recurrence relation with coefficient matrices A and B and an initial vector u. It generalizes the well-known Krylov subspace K n (A; v), which is spanned by a sequence of vectors defined via a first-order linear homogeneous recurrence relation with a single coefficient matrix A and an initial vector v. The applications are shown for the solution of quadratic eigenvalue problems and dimension reduction of second-order dynamical systems. The new approaches preserve essential structures and properties of the quadratic eigenvalue problem and second-order system, and demonstrate superior numerical results over the common approaches based on linearization of these second-order problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.