Abstract

The second-order Arnoldi (SOAR) procedure is an algorithm for computing an orthonormal basis of the second-order Krylov subspace. It has found applications in solving quadratic eigenvalue problems and model order reduction of second-order dynamical systems among others. Unfortunately, the SOAR procedure can be numerically unstable. The two-level orthogonal Arnoldi (TOAR) procedure has been proposed as an alternative to SOAR to cure the numerical instability. In this paper, we provide a rigorous stability analysis of the TOAR procedure. We prove that under mild assumptions, the TOAR procedure is backward stable in computing an orthonormal basis of the associated linear Krylov subspace. The benefit of the backward stability of TOAR is demonstrated by its high accuracy in structure-preserving model order reduction of second-order dynamical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.