Abstract

This paper presents the application of a recently proposed ‘second-order’ homogenization method (J. Mech. Phys. Solids 50 (2002) 737–757) to the estimation of the effective behavior of hyperelastic composites subjected to finite deformations. The main feature of the method is the use of ‘generalized’ secant moduli that depend not only on the phases averages of the fields, but also on the phase covariance tensors. The use of the method is illustrated in the context of particle-, or fiber-reinforced elastomers and estimates analogous to the well-known Hashin–Shtrikman estimates for linear-elastic composites are generated. The new estimates improve on earlier estimates (J. Mech. Phys. Solids 48 (2000) 1389–1411) neglecting the use of fluctuations. In particular, the new estimates, unlike the earlier ones, are capable of recovering the exact incompressibility constraint when the matrix is also taken to be incompressible. To cite this article: O. Lopez-Pamies, P. Ponte Castañeda, C. R. Mecanique 331 (2003).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.