Abstract
The formulation of the second-order wave-current-body problem in the inertial coordinate system involves higher-order derivatives in the body boundary condition. A new method taking advantage of the body-fixed coordinate system in the near field is presented to avoid the calculation of higher-order derivatives in the body boundary condition. The new method has an advantage over the traditional method when the body surface has a sharp corner or high curvature. The nonlinear wave diffraction and forced oscillation of floating bodies are studied up to second order in wave slope. A small forward speed is taken into account. The results of the new method are compared with that of the traditional method based on a formulation in the inertial coordinate system. When the traditional method applies, good agreement has been obtained.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have