Abstract

We study the second-order coherence function of a plasmonic nanoantenna fed by near-field of a single-photon source incoherently pumped in the continuous wave regime. We consider the case of a strong Purcell effect, when the single-photon source radiates almost entirely in the mode of a nanoantenna. We show that when the energy of thermal fluctuations, kT, of the nanoantenna is much smaller than the interaction energy between the electromagnetic field of the nanoantenna mode and the single-photon source, ℏΩR, the statistics of the emission is close to that of thermal radiation. In the opposite limit, ℏΩR>>kT, the nanoantenna radiates single photons. In the last case, we demonstrate the possibility of overcoming the radiation intensity of an individual single-photon source. This result opens the possibility of creating a high-intensity single-photon source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.