Abstract

Results of second law analysis of experimentally-measured aerodynamic losses are presented for a cambered vane with and without film cooling, including comparisons with similar results from a symmetric airfoil. Included are distributions of local entropy creation, as well as mass-averaged magnitudes of global exergy destruction. The axial chord length of the cambered vane is 4.85 cm, the true chord length is 7.27 cm, and the effective pitch is 6.35 cm. Data are presented for three airfoil Mex distributions (including one wherein the flow is transonic), magnitudes of inlet turbulence intensity from 1.1% to 8.2%, and ks/cx surface roughness values of 0, 0.00108, and 0.00258. The associated second law aerodynamics losses are presented for two different measurement locations downstream of the vane trailing edge (one axial chord length and 0.25 axial chord length). The surface roughness, when present, simulates characteristics of the actual roughness which develops on operating turbine airfoils from a utility power engine, over long operating times, due to particulate deposition and to spallation of thermal barrier coatings. Quantitative surface roughness characteristics which are matched include equivalent sandgrain roughness size, as well as the irregularity, nonuniformity, and the three-dimensional irregular arrangement of the roughness. Relative to a smooth, symmetric airfoil with no film cooling at low Mach number and low freestream turbulence intensity, overall, the largest increases in exergy destruction occur with increasing Mach number, and increasing surface roughness. Important variations are also observed as airfoil camber changes. Progressively smaller mass-averaged exergy destruction increases are then observed with changes of freestream turbulence intensity, and different film cooling conditions. In addition, the dependences of overall exergy destruction magnitudes on mainstream turbulence intensity and freestream Mach number are vastly different as level of vane surface roughness changes. When film cooling is present, overall mass-averaged exergy destruction magnitudes are significantly less than values associated with increased airfoil surface roughness for both the cambered vane and the symmetric airfoil. Dimensional exergy destruction values (associated with wake aerodynamic losses) for the symmetric airfoil with film cooling are then significantly higher than data from the cambered vane with film cooling, when compared at a particular blowing ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.