Abstract

We perform a detailed characterisation of the second-order nonlinear optical response of nanocomposites consisting of alternating layers of silver-decorated silica glass nanoparticles and pure silica glass. The samples are fabricated using aerosol techniques and electron-beam dielectric coating, resulting in a bulk-like material with symmetry-breaking induced by the porosity of the alternating layers. The second-order nonlinear response increases with the number of layers. Further, by determining the components of the second-order susceptibility tensor of the samples, we show that the structural properties of the samples are well maintained as the sample thickness is increased. Our results form an important baseline for any further optimization of these types of structures, which can be fabricated using very straightforward methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.