Abstract

One of the current challenges in second-harmonic generation (SHG) is to increase the efficiency of the second-harmonic conversion process while maintaining or even decreasing the fundamental-harmonic pump powers in a compact device. Here, we put forward an on-chip scheme to realize high-efficiency optical SHG in active-passive-coupled microring resonators with the aid of the intrinsic second-order nonlinearity. By careful analysis and extensive simulations, it is found that the introduction of an active microring resonator makes the strong SHG process feature an ultralow-power pump threshold, which is about four orders of magnitude lower than that in a single-microring resonator SHG system reported previously by X. Guo et al. [Optica 3, 1126 (2016)]. The observed SHG is enhanced by a factor of over 200 compared to the single-microring-resonator SHG system. The SHG conversion efficiency of over $72%$ can be reached with optical pump power as low as a few microwatts for our proposed device. This investigation may open a new route towards development of easily fabricated radiation sources of coherent high-energy (shorter-wavelength) photons with an ultralow-power laser-triggered SHG process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.