Abstract
Second-harmonic-generation (SHG) switching is an emerging phenomenon with potential applications in bistable storage and optical switches while also serving as a sensitive probe for inversion-symmetry. Temperature-induced disorder-order phase transition has been proven to be a rational design strategy for achieving SHG bi-state switching; however, pressure-sensitive SHG switching via a disorder-order structural transition mechanism is rarely reported and lacks sensitivity and cyclicity as practical switching materials. Herein, we demonstrate the pressure-induced "dynamical disorder-order" phase transition as an effective strategy for triggering SHG and SHG switching in NH4Cl. The "dynamical disorder-order" phase transition of NH4Cl occurring at as low as 1 GPa is confirmed by comprehensive in situ high-pressure XRD, molecular vibrational spectra, and Brillouin scattering spectra. The pressure-induced SHG is responsive to a wide excitation wavelength region (800-1500 nm), and the "off-on" switching is reversible for up to 50 cycles, setting a record for pressure-driven switching materials. It is worth noting that when pressure is further increased to 14 GPa, NH4Cl exhibits another SHG "on-off" switching, which makes it the first triplet SHG "off-on-off" switching material. Molecular dynamics simulations reveal the key role of N-H···Cl hydrogen bonding in the pressure-induced "dynamic disorder-order" mechanism. Finally, we verified that chemical pressure and physical pressure can jointly regulate the SHG switching behavior of NH4X (X = Cl, Br). The pressure-driven "dynamic disorder-order" transition mechanism sheds light on the rational design of multistable SHG switching materials for photoswitches and information storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.