Abstract

A 440000-transistor second-generation RISC (reduced instruction set computer) floating-point chip is described. The pipeline latency is only two cycles, and a double-precision result is produced every cycle. System throughput and accuracy are increased by using a floating-point multiply-add-fused unit, which carries out a double-precision accumulate as a two-cycle pipelined execution with only one rounding error. While the cycle time (40 ns) is competitive with other CMOS RISC systems, the floating-point performance stretches to the range of bipolar RISC systems (7.4-13 MFLOPS LINPACK). Leading zero anticipation makes the two-cycle pipeline possible by nearly eliminating the additional postnormalization time, and it allows for reduced overall system latency. Partial decode shifters allow complete time sharing for the multiply and data alignment. Improved design techniques for logarithmic addition and higher order counters for multiplication complete this second-generation RISC floating-point unit design. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.