Abstract
Abstract Second Coulomb energy differences, which in the present case are proportional to the tensor Coulomb energy, are calculated for 0 + , T = 1 ground states in the region 18 ≦ A ≦ 42 using a shell model that includes a pairing interaction. The calculation is done with a mathematical formalism that includes p-n pairs as well as p-p and n-n pairs. Besides an enhancement of proton-pair Coulomb energies, the pairing interaction is responsible for lowering the Coulomb energy of N = Z members of isospin triplets and also gives rise to an important term in the second energy difference. Using pairing strengths derived from fitting energy levels for mass-18 and mass-42 nuclei, results of the calculation reproduce experimental second energy differences extremely well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.