Abstract

BackgroundHead and neck squamous cell carcinoma (HNSCC) is a prevalent disease that has a low survival rate and high recurrence risk. Our study aims to investigate the expression and role of SEC11A in HNSCC. MethodsThe expression of SEC11A was assessed in 18 pairs of cancerous and adjacent tissues by qRT-PCR and western blotting. Immunohistochemistry was performed in clinical specimen sections to evaluate the expression of SEC11A and its association with outcomes. Furthermore, the functional role of SEC11A in HNSCC tumor proliferation and progression was investigated using the in vitro cell model with lentivirus-mediated SEC11A knockdown. Colony formation and CCK8 assays were conducted to assess cell proliferation potential, while in vitro migration and invasion were examined using wound healing and transwell assays. To determine the tumor formation potential in vivo, a tumor xenograft assay was used. ResultsIn contrast to adjacent normal tissues, SEC11A expression was significantly elevated in HNSCC tissues. SEC11A was mainly localized in the cytoplasm, and its expression was significantly associated with patient prognosis. SEC11A was silenced using shRNA lentivirus in TU212 and TU686 cell lines, and the gene knockdown was confirmed. A series of functional assays demonstrated that SEC11A knockdown reduced cell proliferation, migration and invasion ability in vitro. In addition, the xenograft assay demonstrated that SEC11A knockdown significantly inhibited tumor growth in vivo. Tumor tissue sections of mice showed decreased proliferation potential in the shSEC11A xenografts cells by immunohistochemistry. ConclusionSEC11A knockdown decreased cell proliferation, migration and invasion in vitro and subcutaneous tumorigenesis in vivo. SEC11A is crucial to HNSCC proliferation and progression, and may serve as a new therapeutic target.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.