Abstract

Data on Secchi disk transparency in Lake Ladoga, the largest lake in Europe, collected between 1905 and 2003, were used to detect climatic (interannual) trends for lake regions with various depths. The seasonal variations in Secchi depth (D s) during the ice-free period both for limnetic regions with large differences in bathymetric characteristics and for the whole lake were estimated by more than 7000 transparency measurements. The two-dimensional data sets have a spatial resolution of approximately 20 km and are geo-referenced by latitude and longitude in Lake Ladoga. Monthly mean spatial transparency distributions and their variances were calculated from May to October. The spatial distributions of the transparency for each month are discussed within the context of lake bathymetric patterns. The maximum values of Secchi depth (more than 4 m) occur during May and October in deep regions. Both the minimum mean value of water transparency and minimum horizontal gradients of D s for the lake occur in August. The regions with significant interannual (climatic) decreasing trends of D s have been identified. These areas increase in summertime and cover approximately half the lake area. In spring and autumn the areas decrease and occur in the southern near-shore regions. The mean downward climatic trend of water transparency in Lake Ladoga is 0.02 m/year.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.