Abstract

The intertidal brown macroalga Fucus vesiculosus L. acclimates its defense against reactive oxygen in response to both (1) growth at different temperatures in laboratory culture and (2) seasonal changes in environmental conditions. Fucus vesiculosus was grown in seawater at 0° C, 20° C, and at 0° C with a 3‐h daily emersion at −10° C. Algae grown at low temperature, both with and without freezing, produced less reactive oxygen after severe freezing stress than those grown at 20° C. These differences were correlated with growth temperature‐induced changes in activities of superoxide dismutase (SOD), glutathione reductase, and ascorbate peroxidase. The contents of tocopherols increased with increased cultivation temperature, whereas the activity of catalase and the content of glutathione and ascorbate did not change. Growth at 0° C increased the resistance of photosynthesis to freezing and reduced photoinhibition in high light at 5° C; the latter effect was further increased in algae subject to daily freezing. These data suggest that elevated activity of reactive oxygen scavenging enzymes, especially SOD, increases the resistance to photoinhibition, at least at low temperature, as well as being important for freezing tolerance. Seasonal changes in reactive oxygen metabolism showed a similar pattern to those elicited by temperature in laboratory culture. Summer samples had lower activities of most reactive oxygen scavenging enzymes than algae collected in autumn and winter when water temperatures were lower. In contrast to the laboratory experiments, ascorbate content did change and was lower during the winter than summer, whereas the content of glutathione was not influenced by season. Overall, the data not only indicate that temperature plays an important role in the regulation of stress tolerance and reactive oxygen metabolism but also suggest that other factors are also involved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.