Abstract
[1] Continuous in situ measurements of the mass concentration of black carbon (BC) aerosols and mixing ratio of carbon monoxide (CO) were made at Cape Hedo on Okinawa Island, Japan, a remote site located in the East China Sea, from March 2008 to May 2009. For the first time, we show temporal variations of BC and CO at Hedo in Asian outflows throughout the year. Annual average concentrations of BC and CO were 0.29 μg m−3 and 150 ppbv, respectively. The origins of the observed air masses were determined by using 5-day back trajectories, suggesting that about 51% of the air masses arriving at Hedo were from the Chinese region during spring and winter, while about 78% of air masses were of maritime origin during summer. Because of the more frequent transport of Chinese air to Hedo in spring and winter, the average and background concentrations of BC and CO in these seasons were higher by about a factor of 2 than those in summer and fall. Air masses from north China made the largest contributions to elevating the BC levels at Hedo because of the high BC emission rate and frequency of transport. The observed ΔBC/ΔCO ratio systematically decreased with the decrease in model-calculated transport efficiency (TEBCcal). On the basis of this result, we derive region-specific ΔBC/ΔCO ratios by selecting data with TEBCcal > 80%. The annually averaged ΔBC/ΔCO ratios for air originated from north and south China were 7.0 ± 3.3 and 7.5 ± 4.6 ng m−3 ppbv−1, respectively, about half the annual BC/CO emission ratio derived from the emission inventory of Zhang et al. (2009). We evaluate the CO emission inventory of Zhang et al. (2009) for China by comparing observed (ground-based and aircraft) and model-calculated CO values. The comparison indicates that the CO emissions from China were underestimated by about a factor of 2.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.