Abstract

Atmospheric amines have unique acid-neutralizing capacity and play an important role in atmospheric chemical reactions. An integrated observation of PM2.5 samples (from Dec 2015 to Nov 15, 2016) was conducted in a typical industrial city (Xuzhou), China. Concentrations of total measured amines (∑amines, including methylamine (MA), ethylamine (EA), dimethylamine (DMA), propanamine (PA) and trimethylamine (TMA) + diethylamine (DEA)) were 172.0 ± 98.2 ng m-3, accounting 1.5 ± 0.6 ‰ of PM2.5 mass. ∑amines were higher in winter (249.0 ± 112.3 ng m-3) and spring (192.4 ± 75.9 ng m-3) than in summer (114.7 ± 33.3 ng m-3) and autumn (103.7 ± 34.3 ng m-3). Concentrations of MA and EA (the dominant amines) were highest in winter, while DMA, PA and TMA + DEA showed opposite seasonality. EA/MA ratios ranged from 0.04 to 8.7 with a median value of 0.3, and the averaged EA/MA ratio was 2.0 in winter, indicating large contribution of EA. Environmental factors including temperature (T), relative humidity (RH) and atmospheric oxidizing capacity (O3 and Ox represented) were found to influence concentrations of amines in PM2.5. The Positive Matrix Factorization (PMF) model identified secondary products (41.6 %), combustion emissions (39.8 %), soil and waste incineration emissions (13.2 %) and biological emissions and aging products (5.4 %) as the 4 sources of amines in PM2.5. MA was mainly secondary products (82.5 %) and had high contribution of local secondary formation, while EA was mainly derived from combustion emissions (83.7 %) and influenced by regional transportation. In winter, combustion emissions (including coal combustion, biomass burning and traffic emissions, contributed 57.7 %) surpassed secondary products (31.6 %) as the predominant sources of amines, especially under the influence of regional transportation (75.7 %).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call