Abstract

To explore the seasonal variations and sources of water-soluble ions, PM2.5 samples were collected from 2017 to 2018. Water-soluble ions including SO42-, NO3-, Cl-, F-, Na+, Mg2+, NH4+, K+, and Ca2+ were determined via ion chromatography. Furthermore, the existing form of NH4+, nitrogen oxidation rate (NOR), sulfur oxidation rate (SOR), and [NO3-]/[SO42-] ratio were explored. The results showed that dust, coal combustion, biomass burning, and secondary aerosols were the dominant contributors to water-soluble ions. Ca2+, SO42-, NH4+, and NO3- were the main water-soluble ions in PM2.5 in Xi'an. Correlation analysis results showed that NH4+ could not completely neutralize SO42- in spring; unneutralized SO42- could be mainly combined with K+ and Ca2+. NH4+ mainly existed in the form of ① NH4HSO4 and (NH4)2SO4 in summer; ② NH4HSO4 and NH4NO3 in autumn; and ③ (NH4)2SO4 and NH4NO3 in winter. The yearly mean values of SOR and NOR were 0.35 and 0.16, respectively, indicating a high secondary aerosol transformation rate during the study period. The [NO3-]/[SO42-] ratio showed Xi'an was mainly affected by stationary sources in spring and summer, while the contribution of mobile sources in autumn and winter was greater than stationary sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call