Abstract

In order to explore the pollution characteristics, seasonal variations, and sources of water-soluble inorganic ions (WSIIs) in PM2.5 in Zhengzhou, PM2.5 samples were seasonally collected from December 2020 to October 2021; then, combining gaseous pollutants (SO2, NO2, and O3) and meteorological parameters (temperature and relative humidity), nine WSIIs (NO3-, NH4+, SO42-, Ca2+, K+, Na+, Mg2+, F-, and Cl-) were analyzed. The results showed that the annual average concentration of the total water-soluble ions (TWSIIs) was (39.34±21.56) μg·m-3for the four seasons, showing obvious seasonal variations with the maximum value in winter and the minimum value in summer. Annual PM2.5 was slightly alkaline in Zhengzhou, and NH4+ most likely existed in the form of NH4NO3 and (NH4)2SO4. The average sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) were 0.35 and 0.19, respectively, indicating that SO42- and NO3- mainly derived from secondary formation. The main potential source regions of WSIIs obtained by the concentration weight trajectory (CWT) model showed temporal and spatial variations. The significant sources of WSIIs based on principal component analysis (PCA) were dust, secondary generation, combustion, and industrial activities, which were obviously influenced by wind direction and speed in Zhengzhou.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.