Abstract
This study examined how muscle metabolic organization varied during an annual cycle in which rainbow trout (Oncorhynchus mykiss) were held in outdoor holding ponds in which they were exposed to natural changes in temperature (range 0.2 to 15.6°C) and photoperiod. We examined the activities of glycolytic and mitochondrial enzymes in red and white muscle to evaluate whether trout enhance their capacity for lipid and carbohydrate oxidation during cold-acclimization. When assayed at habitat temperature, the enzyme activities generally increased in spring to reach a maximum in summer followed by a decrease in the fall. This led to significantly higher activities at warm than cold periods for all enzymes measured in red muscle and all but one in white muscle. The activities at 10°C provided little evidence for compensatory adjustments of aerobic capacity. Particularly in red muscle, enzyme levels at 10°C were generally lower during cold than warm periods. The variation of enzyme activities throughout the cycle was not due to changes in protein concentration, as the same responses were observed when activities were expressed per g wet mass or per mg protein. Although the aerobic capacity did not increase with cold-acclimatization, the relative capacity for lipid oxidation was higher in winter than in summer trout. In contrast, the relative capacity for aerobic glycolysis was higher in summer than in winter trout. Thus, the metabolic capacities of trout muscle undergo seasonal reorganization.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have