Abstract
Many birds exhibit considerable phenotypic flexibility in metabolism to maintain thermoregulation or to conserve energy. This flexibility usually includes seasonal variation in metabolic rate. Seasonal changes in physiology and behavior of birds are considered to be a part of their adaptive strategy for survival and reproductive success. House Sparrows ( Passer domesticus) are small passerines from Europe that have been successfully introduced to many parts of the world, and thus may be expected to exhibit high phenotypic flexibility in metabolic rate. Mass specific Resting Metabolic Rate (RMR) and Basal Metabolic Rate (BMR) were significantly higher in winter compared with summer, although there was no significant difference between body mass in summer and winter. A similar, narrow thermal neutral zone (25–28 °C) was observed in both seasons. Winter elevation of metabolic rate in House Sparrows was presumably related to metabolic or morphological adjustments to meet the extra energy demands of cold winters. Overall, House Sparrows showed seasonal metabolic acclimatization similar to other temperate wintering passerines. The improved cold tolerance was associated with a significant increase in VO 2 in winter relative to summer. In addition, some summer birds died at 5 °C, whereas winter birds did not, further showing seasonal variation in cold tolerance. The increase in BMR of 120% in winter, compared to summer, is by far the highest recorded seasonal change so far in birds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.