Abstract

Summary. Two lines of perennial ryegrass (Lolium perenne L.), cv. Aurora and breeding line Ba 11351, from the United Kingdom with elevated concentrations of water-soluble carbohydrates in the shoot were compared with the standard cultivars, Ellett, Vedette and Kangaroo Valley, in pure grass swards under irrigation at Kyabram, Victoria, and Gatton, Queensland, and under natural rainfall at Condah, Victoria, during 1995–97. Near infrared reflectance spectroscopy was used to predict the water-soluble carbohydrate, crude protein, in vitro dry matter digestibility, neutral and acid detergent fibre, and Klason lignin concentrations of the perennial ryegrass herbage. Herbage yield and water-soluble carbohydrate differed between cultivars at each site at most harvests, with the high water-soluble carbohydrate lines usually yielding less and having higher water-soluble carbohydrate concentrations than the 3 standard cultivars. However, the high water-soluble carbohydrate lines also had higher water-soluble carbohydrate concentrations at harvests where their yield was equal to the standard cultivars. The other nutritive value traits differed significantly at more than half of the 32 harvests: the high water-soluble carbohydrate lines had higher crude protein and dry matter digestibility, and lower neutral detergent fibre, the neutral detergent fibre containing less acid detergent fibre and lignin than did the standard cultivars. The high water-soluble carbohydrate lines were more susceptible to crown rust during spring and summer than the standard cultivars at Kyabram and Gatton: heavy infections reduced yield, water-soluble carbohydrate, dry matter digestibility and crude protein. Higher water-soluble carbohydrate may depend on only a few genes, as does rust resistance and it seems likely that high yielding, high water-soluble carbohydrate cultivars can be developed by recombination and selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.