Abstract

Sequestration of plant secondary metabolites by herbivores can vary across both host plant phenology and herbivore ontogeny, but few studies have explored how they concurrently change in the field. We explored variation in iridoid glycoside concentration and composition in white turtlehead, Chelone glabra, as well as sequestration of iridoid glycosides by its specialist herbivore, the Baltimore checkerspot, Euphydryas phaeton, across the development of both herbivore and host plant. In 2012 we sampled plants to describe seasonal variation in the concentrations of two iridoid glycosides, aucubin and catalpol. In 2017, we sampled both host plants and caterpillars over an entire growing season and explored the relationship between plant chemistry and herbivore sequestration. We also compared iridoid glycoside concentrations of plants with and without herbivory to gain insight into whether levels of secondary compounds were impacted by herbivory. We found that total plant iridoid glycosides varied across the season and that total sequestered iridoid glycosides in caterpillars closely mirrored concentration patterns in plants. However, the magnitude of sequestration by caterpillars ranged from 2 to 20 times the concentrations in host plants, with different proportions of aucubin and catalpol. In addition, plants with herbivory had lower iridoid glycoside concentrations than plants without herbivory, although this difference changed over time. These results suggest that while variation in host plant secondary metabolites may be a dominant factor driving sequestration, other ecological factors may mitigate the relationship between host plant chemistry and herbivore sequestration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call