Abstract

Chemical, electrophysiological, and field trapping experiments were carried out to identify the female-produced sex pheromone of the asparagus moth, Parahypopta caestrum, a very serious pests of asparagus cultivations in southern Europe. Gas chromatography coupled with mass spectrometry and electroantennogram detection (GC-MS-EAD) analysis of hexane and solid-phase microextraction (SPME) extracts of sex pheromone glands of calling females consistently detected four compounds eliciting EAG responses in male moth antennae. According to their GC retention times, mass spectra, and comparative EAG analyses with reference standards, these EAD-active compounds were identified as (Z)-9-tetradecenol (Z9-14:OH), (Z)-5-tetradecenyl acetate (Z5-14:Ac), (Z)-7-tetradecenyl acetate (Z7-14:Ac), and (Z)-9-tetradecenyl acetate (Z9-14:Ac), respectively. In the SPME extracts from the head-space of individual abdominal tips, Z9-14:Ac, Z5-14:Ac, Z7-14:Ac, and Z9:14 OH were detected in the ratio of 82:9:5:4. In EAG dose-response experiments, Z9-14:Ac was the strongest antennal stimulant at different doses tested. In field trapping experiments, Z9-14:Ac, Z7-14:Ac, and Z5-14:Ac proven to be essential for male attraction and a their 85:5:10 blend loaded onto green rubber septum dispensers was significantly more effective than single-, two-, and any other three-component blend of these compounds. The addition of Z9-14:OH to the optimal blend resulted in a significant reduction of male catches. The attractive blend here identified allowed for an effective and accurate monitoring of P. caestrum flight activity in southern Italy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.