Abstract

The Spermophilus dauricus, the wild Daurian ground squirrel, is known to exhibit seasonal breeding behavior. Although the importance of gut microbiota in animal digestion, metabolism, and immunity is well-established, the correlation between gut microbiota and seasonal breeding in this species remains inadequately explored. In the present study, using metagenomic sequencing technology, the compositions and functions of the gut microbiota of wild Daurian ground squirrels in different breeding seasons were explored. The dominant gut microbial phyla were Firmicutes and Bacteroidetes. The Firmicutes were predominant in the breeding season, whereas Bacteroidetes were predominant in the non-breeding season. At the genus level, Lactobacillus accumulated during the breeding season, whereas Odoribacter and Alistipes increased during the non-breeding season. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genome) annotations indicated that genes in gut samples were highly associated with metabolic functions. The differential expression gene analysis showed that genes related to the phosphotransferase system, cysteine, and methionine metabolism were highly expressed during the breeding season, whereas the non-breeding season upregulated genes were enriched in starch and sucrose metabolism and bacterial chemotaxis pathways. In conclusion, this study could provide a reference for investigating gut microbiota in seasonal breeding animals and offer new insight into gut microbial function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call