Abstract

The Bacille Calmette-Guerin (BCG) vaccine is a well-established inducer of innate immune memory (also termed trained immunity), causing increased cytokine production upon heterologous secondary stimulation. Innate immune responses are known to be influenced by season, but whether seasons impact induction of trained immunity is not known. To explore the influence of season on innate immune memory induced by the BCG vaccine, we vaccinated healthy volunteers with BCG either during winter or spring. Three months later, we measured the ex vivo cytokine responses against heterologous stimuli, analyzed gene expressions and epigenetic signatures of the immune cells, and compared these with the baseline before vaccination. BCG vaccination during winter induced a stronger increase in the production of pro-inflammatory cytokines by peripheral blood mononuclear cells (PBMCs) upon stimulation with different bacterial and fungal stimuli, compared to BCG vaccination in spring. In contrast, winter BCG vaccination resulted in lower IFNγ release in PBMCs compared to spring BCG vaccination. Furthermore, NK cells of the winter-vaccinated people had a greater pro-inflammatory cytokine and IFNγ production capacity upon heterologous stimulation. BCG had only minor effects on the transcriptome of monocytes 3 months later. In contrast, we identified season-dependent epigenetic changes in monocytes and NK cells induced by vaccination, partly explaining the higher immune cell reactivity in the winter BCG vaccination group. These results suggest that BCG vaccination during winter is more prone to induce a robust trained immunity response by activating and reprogramming the immune cells, especially NK cells. (Dutch clinical trial registry no. NL58219.091.16)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.