Abstract

We present the results of an analysis of the seasonal variability of current fields in the Caspian Sea, reconstructed by assimilation of climatic temperature and salinity into the primitive-equation model of water circulation on the basis of an algorithm for adaptive statistics of prediction errors. The sources in heat and salt transfer-diffusion equations depend on the spatial and temporal variability of the variances of prediction errors and one-dimensional (in the vertical coordinate) variances of measurement errors for temperature and salinity. The variances of prediction errors are adjusted at the moments of data assimilation in accordance with a simplified Kalman filter. The climatic circulation of waters in the Caspian Sea is shown to be highly varying. The maximum of its intensity over the entire depth is reached in February. The minimum of kinetic energy is observed in April. The currents in deep-sea areas are determined by the balance between wind and baroclinic factors of the formation of circulation with wind currents prevalent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call