Abstract
Three forms of linear interpolation are routinely implemented in geographical information science, by interpolating between measurements made at the endpoints of a line, the vertices of a triangle, and the vertices of a rectangle (bilinear interpolation). Assuming the linear form of interpolation to be correct, we study the propagation of error when measurement error variances and covariances are known for the samples at the vertices of these geometric objects. We derive prediction error variances associated with interpolated values at generic points in the above objects, as well as expected (average) prediction error variances over random locations in these objects. We also place all the three variants of linear interpolation mentioned above within a geostatistical framework, and illustrate that they can be seen as particular cases of Universal Kriging (UK). We demonstrate that different definitions of measurement error in UK lead to different UK variants that, for particular expected profiles or surfaces (drift models), yield weights and predictions identical with the interpolation methods considered above, but produce fundamentally different (yet equally plausible from a pure data standpoint) prediction error variances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geographical Information Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.